Matière
- Matière et Energie
- Energie
Quand la silice accroît la durée de vie des batteries au lithium-soufre
- Tweeter
-
-
1 avis :
Trouver des alternatives plus écologiques et moins coûteuses aux batteries lithium-ion est devenue une priorité de recherche, dans la perspective du développement rapide des véhicules électriques et du stockage massif d’électricité rendu nécessaire par la montée en puissance des énergies renouvelables. Les batteries au lithium-soufre (LSB) – composées d’une cathode à base de soufre et d’une anode de lithium plongée dans un électrolyte liquide – sont des candidats prometteurs pour remplacer l’omniprésente batterie au lithium-ion en raison de leur faible coût et de la non-toxicité et de l’abondance du soufre.
Cependant, l’utilisation du soufre dans les batteries est délicate pour deux raisons. Premièrement, pendant le cycle de “décharge”, des polysulfures de lithium solubles (LiPS) se forment à la cathode, se diffusent dans l’électrolyte et atteignent facilement l’anode, où ils dégradent progressivement la capacité de la batterie. Deuxièmement, le soufre n’est pas conducteur. Ainsi, un matériau hôte conducteur et poreux est nécessaire pour accueillir le soufre et simultanément piéger les LiPS à la cathode. Dans un passé récent, des structures hôtes à base de carbone ont été explorées en raison de leur conductivité. Cependant, les hôtes à base de carbone ne peuvent pas piéger le LiPS.
Dans une étude récente publiée dans Advanced Energy Materials, des scientifiques de l’Institut des sciences et technologies de Daegu Gyeongbuk ont proposé une nouvelle structure hôte appelée “silice mésoporeuse ordonnée en plaquettes (pOMS)“. Ce qui est inhabituel dans leur choix, c’est que la silice, un oxyde métallique peu coûteux, est en fait non conductrice. Cependant, la silice est très polaire et attire d’autres molécules polaires telles que les LiPS.
Après application d’un agent conducteur à base de carbone sur la structure de la pOMS, le soufre solide initial dans les pores de la structure se dissout dans l’électrolyte, d’où il diffuse ensuite vers l’agent conducteur à base de carbone pour être réduit afin de générer du LiPS. De cette manière, le soufre participe efficacement aux réactions électrochimiques nécessaires malgré la non-conductivité de la silice.
En même temps, la nature polaire des pOMS garantit que le LiPS reste proche de la cathode et éloigné de l’anode. Les scientifiques ont également construit une structure hôte analogue, non polaire et hautement conductrice, en carbone poreux conventionnel, afin de mener des expériences comparatives avec la structure pOMS. Le professeur Jong-Sung Yu, qui a dirigé l’étude, remarque : « La batterie avec le carbone hôte présente une capacité initiale élevée qui chute rapidement en raison de la faible interaction entre le carbone non polaire et le LiPS. La structure de la silice retient clairement beaucoup plus de soufre pendant les cycles continus, ce qui se traduit par une rétention de capacité et une stabilité beaucoup plus importantes sur pas moins de 2000 cycles ».
Comme le souligne le Professeur Yu : « Nos résultats sont surprenants, car personne n’aurait jamais pensé que la silice non conductrice pouvait être un hôte de soufre très efficace et même surpasser les hôtes de carbone de pointe ». Cette étude élargit la sélection de matériaux hôtes pour les LSB et pourrait conduire à un changement de paradigme dans la réalisation des batteries au soufre de la prochaine génération.
Article rédigé par Georges Simmonds pour RT Flash
Noter cet article :
Vous serez certainement intéressé par ces articles :
La batterie organique du MIT pourrait révolutionner les véhicules électriques
De nombreux véhicules électriques sont alimentés par des batteries contenant du cobalt, un métal qui entraîne des coûts financiers, environnementaux et sociaux élevés. Les chercheurs du MIT ont ...
Produire un hydrogène décarboné et économique par plasmalyse
La start-up Spark Cleantech a présenté au méthaniseur de Lamotte-Beuvron, l’expérimentation qui doit permettre de produire de l’hydrogène économique et décarboné. Patrick Peters et Erwan Panier, ...
Transformer le CO2 en méthane par photocatalyse
Des chercheurs du Daegu Gyeongbuk Institute of Science and Technology (DGIST) en Corée du Sud ont mis au point une technologie capable de transformer le CO2 en méthane (CH4) avec une efficacité ...
Recommander cet article :
- Nombre de consultations : 0
- Publié dans : Energie
- Partager :