RTFlash

Vivant

Quadruplexes d’ADN : les nouvelles stars de la génétique

Les quadruplexes d’ADN n'avaient pas été prévus par les pères de la génétique, Watson et Crick. Pourtant, ils pourraient s’avérer capitaux dans la lutte contre plusieurs maladies graves, cancer en tête. Une chose est sûre : depuis la démonstration de l’existence de ces éléments dans les cellules humaines en 2013, la recherche dans ce domaine explose ! « Grâce à l’étude des quadruplexes, on est littéralement en train de redéfinir le code génétique. Ce sont comme des interrupteurs génétiques qui offrent un nouveau niveau de régulation des gènes », s’enthousiasme le chercheur David Monchaud, de l’Institut de chimie moléculaire de l’Université de Bourgogne.

Concrètement, les quadruplexes sont des structures non usuelles de l’ADN. Cette molécule est classiquement constituée de deux brins enroulés l’un sur l’autre, formés chacun d’un enchaînement de « bases nucléiques » (guanine, G ; adénine, A ; cytosine, C ; et thymine, T), et maintenus ensemble grâce à des liaisons faibles entre les bases. Les quadruplexes d’ADN, eux, sont des structures d’ADN composées non pas de 2, mais de 4 brins tournant les uns sur les autres. « Ils se forment par repliement de l’ADN quand il est riche en G : en s’auto-assemblant entre elles, les bases G conduisent à une structure à 4 brins riches en G. D’où l’autre nom des quadruplexes : G4 », précise le chercheur.

Autre caractéristique importante des G4 : contrairement à la double hélice d’ADN – qui est, elle, une structure permanente –, ce sont des structures très dynamiques, voire furtives. « C’est une des raisons pour lesquelles leur existence dans les cellules humaines n’a été démontrée que depuis peu », souligne David Monchaud. Les données les plus récentes suggèrent que les G4 peuvent se former au niveau de pas moins de… 716 000 endroits de notre génome ! Cela dit, il semble qu'ils soient plus fréquents au niveau des télomères, ces zones situées aux extrémités des chromosomes et qui en assurent la stabilité. Et aussi au niveau des promoteurs de gènes (régions à proximité des gènes et indispensables à leur expression), notamment des promoteurs d’oncogènes, dont la surexpression favorise le développement des cancers.

Par ailleurs, d’autres molécules génétiques peuvent également former des G4 quand elles sont riches en G : les ARN, des molécules proches chimiquement de l’ADN mais constituées d’un seul brin, indispensables à la fabrication des protéines. Enfin, l’existence des G4 est maintenant suspectée dans tous les types de cellules vivantes : celles des humains, mais aussi celles des plantes, ou encore des virus et des bactéries.

Si les G4 intéressent tant les chercheurs, c’est à cause de leur possible implication dans plusieurs processus biologiques clés, indispensables au bon fonctionnement de la cellule. Parmi ceux-ci : la stabilité des chromosomes ; la « réplication » de l’ADN, mécanisme survenant avant la division des cellules, permettant d’obtenir, à partir d’une molécule d’ADN, deux molécules identiques ; la « transcription » où un brin de l’ADN est copié en une molécule d’ARN ; la « traduction », processus où l’ARN est utilisé pour permettre la synthèse de protéines ; etc.

A cause de leurs possibles rôles dans les processus biologiques clés cités plus haut, les G4 pourraient être impliqués dans le développement de plusieurs maladies graves : les cancers, certaines maladies rares (syndrome de l’X fragile, etc.), neurodégénératives (maladie de Charcot, démences fronto-temporales, etc.), ou infectieuses (herpès, sida, etc.). D’où l’idée de tenter de développer des traitements les ciblant pour lutter contre ces différentes pathologies.

Article rédigé par Georges Simmonds pour RT Flash

CNRS

Noter cet article :

 

Vous serez certainement intéressé par ces articles :

Recommander cet article :

back-to-top