Matière
- Matière et Energie
- Energie
Des protons accélérés par laser pour lutter contre le cancer
- Tweeter
-
-
0 avis :
La protonthérapie est un traitement efficace contre les cancers situés dans des zones inaccessibles aux instruments du chirurgien ou difficiles à traiter par radiothérapie : les rayons X endommageraient les tissus qu'ils traversent avant d'atteindre la tumeur. Il s'agit des cancers dans le cerveau, dans des zones proches de la moelle épinière ou encore à l'intérieur de l'oeil. Contrairement aux rayons X, les faisceaux de protons déposent leur énergie principalement en fin de course (ils n'abîment pas les tissus traversés). En outre, ils permettent de cibler une tumeur au millimètre près.
Aujourd'hui, les seuls centres de protonthérapie français sont ceux d'Orsay et de Nice (ce dernier se limite aux traitements oculaires). Ils fonctionnent avec des accélérateurs conventionnels (des cyclotrons), où une combinaison de champs magnétiques et électriques accélère les protons jusqu'aux énergies nécessaires aux applications médicales (60 MeV à Nice et 300 MeV à Orsay). Le centre de protonthérapie d'Orsay, service de l'Institut Curie, amorce actuellement un projet d'extension et de modernisation qui va aboutir en 2009 à une capacité de traitement de 650 patients par an. Un troisième centre, utilisant des ions carbone en plus des protons, devrait être mis en service à Lyon vers 2010. Il coûtera environ 120 millions d'euros et occupera un bâtiment entier. Ces projets ne permettront toutefois de répondre que partiellement aux besoins en matière de traitement.
Les chercheurs du CNRS et du CEA ont utilisé une technique alternative pour produire des protons candidats à la protonthérapie : un laser pulsé de haute intensité focalisé sur une cible métallique. Le laser est suffisamment puissant pour provoquer l'arrachage de protons situés à l'arrière de la cible. Cette technique présente plusieurs avantages. D'une part, elle permet de réaliser des accélérateurs compacts, car elle revient à créer un accélérateur linéaire microscopique : en parcourant 10 microns, les protons initialement au repos acquièrent une énergie de plusieurs dizaines de MeV. Compte-tenu des équipements annexes, une installation productrice de protons tient dans une pièce (au lieu d'un bâtiment entier pour un cyclotron) : elle pourrait être installée au sein des hôpitaux. Le faisceau laser serait facilement « transportable » par un jeu de miroirs jusqu'au patient, là où les cyclotrons exigent des équipements lourds pour transporter les protons de haute énergie sur quelques dizaines de mètres. D'autre part, cette technique pourrait réduire substantiellement le coût global des installations de protonthérapie en réduisant non seulement le coût de la source de protons (l'installation de recherche en cours de construction au LULI ne vaut que quelques millions d'euros) mais aussi celui de l'infrastructure.
Noter cet article :
Vous serez certainement intéressé par ces articles :
Produire de l'énergie à partir de l'évaporation de l'eau de mer
L’évaporation est un processus naturel omniprésent, à tel point que la plupart d’entre nous le considèrent comme acquis. Environ la moitié de l’énergie solaire qui atteint la Terre est à l’origine ...
Capturer le CO2 grâce à un matériau hybride à haut rendement énergétique
Dans les grandes industries émettrices de CO2, comme les cimenteries, les raffineries de pétrole et les centrales thermiques, la technologie de capture du carbone peut être facilement appliquée pour ...
Un nouvel acier pour produire de l'hydrogène vert bon marché
En collaboration avec son équipe de l'Université de Hong Kong, Huang a mis au point un nouvel alliage à base d'acier. Baptisé le SS-H2 il pourrait bien être la clé pour dynamiser la production ...
Recommander cet article :
- Nombre de consultations : 92
- Publié dans : Energie
- Partager :