Matière
- Matière et Energie
- Energie
Des protons accélérés par laser pour lutter contre le cancer
- Tweeter
-
-
0 avis :
La protonthérapie est un traitement efficace contre les cancers situés dans des zones inaccessibles aux instruments du chirurgien ou difficiles à traiter par radiothérapie : les rayons X endommageraient les tissus qu'ils traversent avant d'atteindre la tumeur. Il s'agit des cancers dans le cerveau, dans des zones proches de la moelle épinière ou encore à l'intérieur de l'oeil. Contrairement aux rayons X, les faisceaux de protons déposent leur énergie principalement en fin de course (ils n'abîment pas les tissus traversés). En outre, ils permettent de cibler une tumeur au millimètre près.
Aujourd'hui, les seuls centres de protonthérapie français sont ceux d'Orsay et de Nice (ce dernier se limite aux traitements oculaires). Ils fonctionnent avec des accélérateurs conventionnels (des cyclotrons), où une combinaison de champs magnétiques et électriques accélère les protons jusqu'aux énergies nécessaires aux applications médicales (60 MeV à Nice et 300 MeV à Orsay). Le centre de protonthérapie d'Orsay, service de l'Institut Curie, amorce actuellement un projet d'extension et de modernisation qui va aboutir en 2009 à une capacité de traitement de 650 patients par an. Un troisième centre, utilisant des ions carbone en plus des protons, devrait être mis en service à Lyon vers 2010. Il coûtera environ 120 millions d'euros et occupera un bâtiment entier. Ces projets ne permettront toutefois de répondre que partiellement aux besoins en matière de traitement.
Les chercheurs du CNRS et du CEA ont utilisé une technique alternative pour produire des protons candidats à la protonthérapie : un laser pulsé de haute intensité focalisé sur une cible métallique. Le laser est suffisamment puissant pour provoquer l'arrachage de protons situés à l'arrière de la cible. Cette technique présente plusieurs avantages. D'une part, elle permet de réaliser des accélérateurs compacts, car elle revient à créer un accélérateur linéaire microscopique : en parcourant 10 microns, les protons initialement au repos acquièrent une énergie de plusieurs dizaines de MeV. Compte-tenu des équipements annexes, une installation productrice de protons tient dans une pièce (au lieu d'un bâtiment entier pour un cyclotron) : elle pourrait être installée au sein des hôpitaux. Le faisceau laser serait facilement « transportable » par un jeu de miroirs jusqu'au patient, là où les cyclotrons exigent des équipements lourds pour transporter les protons de haute énergie sur quelques dizaines de mètres. D'autre part, cette technique pourrait réduire substantiellement le coût global des installations de protonthérapie en réduisant non seulement le coût de la source de protons (l'installation de recherche en cours de construction au LULI ne vaut que quelques millions d'euros) mais aussi celui de l'infrastructure.
Noter cet article :
Vous serez certainement intéressé par ces articles :
Transformer toutes les surfaces en générateur solaire
Des scientifiques du département de physique de l’université d’Oxford ont mis au point une approche révolutionnaire qui pourrait permettre de produire des quantités croissantes d’électricité solaire ...
Un moteur multicarburant performant
Les constructeurs japonais Toyota, Subaru et Mazda ont annoncé, lors d’une conférence de presse commune, le développement conjoint d’une nouvelle génération de moteur thermique capable de tourner ...
Un revêtement antireflet qui améliore le rendement des panneaux solaires
L’amélioration du rendement des modules solaires figure parmi les priorités des ingénieurs. En effet, le Soleil est un puissant vecteur d’énergie durable qui peut nous permettre d’atteindre la ...
Recommander cet article :
- Nombre de consultations : 92
- Publié dans : Energie
- Partager :