RTFlash

Avenir

Une nouvelle famille de matériaux pour la production solaire d’hydrogène renouvelable

L’utilisation de l’hydrogène comme vecteur énergétique pour produire de l’électricité et de la chaleur sur demande est une solution pour le stockage de l’énergie presque idéale dans le cadre de la lutte contre le réchauffement climatique et du développement durable, pour les besoins domestiques, dans le transport, ou à grande échelle dans des centrales de production d’énergie.

En effet, combiné avec l’oxygène de l’air, l’hydrogène permet de produire de l’énergie thermique ou électrique en ne dégageant aucune émission polluante (principalement de l’eau). C’est par exemple le cas dans les piles à combustible utilisées dans les véhicules fonctionnant à l’hydrogène, qui combinent hydrogène et oxygène pour produire du courant électrique et alimenter un moteur électrique.

Néanmoins, l’hydrogène utilisé actuellement est essentiellement produit à partir d’énergies fossiles, et il est donc nécessaire de trouver d’autres modes de production décarbonés. L’une des possibilités est d’utiliser directement l’énergie solaire pour produire de l’hydrogène à partir d’eau dans des cellules photo-électro-chimiques. Ces cellules sont composées de photo-électrodes, sortes de cellules solaires plongées directement dans de l’eau, qui permettent de collecter l’énergie solaire, et utiliser cette énergie pour casser les molécules d’eau pour former des molécules d’hydrogène et d’oxygène.

C’est l’approche choisie par le consortium constitué de scientifiques rennais, avec Nicolas Bertru et Yoan Léger (Institut FOTON-CNRS, INSA Rennes) et Bruno Fabre (Institut des sciences chimiques de Rennes–CNRS, Université de Rennes 1), et en collaboration avec des membres de l’Institut de Physique de Rennes–CNRS à l’Université de Rennes 1. Les semi-conducteurs sont des matériaux ayant des propriétés intermédiaires entre les conducteurs électriques (le plus souvent des métaux), et les isolants. Ces propriétés peuvent être par exemple utilisées pour laisser passer ou non le courant électrique sur demande, comme dans le cas du silicium, matériau abondant et peu cher, formant la base de toutes les puces électroniques actuelles. Mais elles peuvent aussi être utilisées pour l’émission, ou l’absorption de la lumière, comme dans le cas des semi-conducteurs dits « III-V » qui sont utilisés dans une large gamme d’applications, allant des émetteurs lasers ou LEDs et autres capteurs optiques, jusqu’aux cellules solaires photovoltaïques pour l’aérospatial. On les nomme « III-V » car ils se composent d’un ou plusieurs éléments de la colonne III et de la colonne V du tableau périodique de Mendeleïev.

Si ces matériaux « III-V » sont très performants, ils sont aussi également plus coûteux. C’est dans ce contexte que de nombreux chercheurs tentent, depuis les années 1980, de déposer de très fines couches de ces matériaux sur des substrats de silicium pour obtenir de hautes performances optiques, nécessaires pour garantir pas exemple une bonne absorption du rayonnement dans une cellule solaire, ou pour garantir une émission de lumière efficace dans un laser, tout en réduisant ainsi drastiquement le coût de fabrication et l’empreinte environnementale des composants développés.

L’un des principaux problèmes de cette approche était lié à l’apparition de défauts cristallins dans le matériau semi-conducteur, c’est-à-dire à la présence d’un ou plusieurs atomes mal positionnés par rapport à l’arrangement parfaitement régulier que devraient avoir les atomes du cristal. Ceci a pour conséquence de dégrader les performances des lasers ou des cellules solaires ainsi développées, et c’est pourquoi les efforts en recherche portaient essentiellement sur la réduction ou la suppression de ces défauts. Ces chercheurs ont démontré que ces irrégularités du cristal, considérées usuellement comme des défauts, avaient des propriétés physiques très originales (des inclusions avec un caractère métallique), qui pouvaient être utilisées efficacement pour la production d’hydrogène solaire, et pour bien d’autres applications photo-électriques.

Ceci permet au matériau d’être à la fois photo-actif (absorption de la lumière et conversion en charges électriques), et métallique localement (transport des charges électriques). Plus surprenant encore, le matériau peut conduire à la fois les charges positives et négatives (caractère ambipolaire). Pour l’instant, ces échantillons ont permis de produire de l’hydrogène à l’échelle de la cellule de laboratoire, mais il semble possible d’imaginer que si la stabilité de ces matériaux est améliorée, elles pourront, dans le futur, servir de substrat pour une conversion de l’énergie solaire en hydrogène à plus grande échelle.

Mais, au-delà de cette application démontrée, les propriétés intrinsèques de cette nouvelle famille de matériaux qui peuvent être élaborés assez simplement, permettent aussi d’envisager de nombreuses autres applications. La capacité du matériau à convertir efficacement la lumière en charges électriques en fait par exemple un candidat de choix pour les cellules solaires photovoltaïques, ou les capteurs optiques.

Article rédigé par Georges Simmonds pour RT Flash

AS

Noter cet article :

 

Vous serez certainement intéressé par ces articles :

    Recommander cet article :

    back-to-top