Matière
- Matière et Energie
- Energie
Un nouveau pas vers la maîtrise de la fusion nucléaire
- Tweeter
-
-
1 avis :
Les chercheurs sont parvenus à stopper la croissance des instabilités au cœur d’un réacteur à fusion, une prouesse inédite ! Comment y sont-ils parvenus ? Retour sur cette énergie aussi prometteuse que complexe à maîtriser.
La fusion cherche à reproduire l’énergie du Soleil dans un réacteur. Lorsqu’il est chauffé à plusieurs millions de degrés, le gaz devient ce qu’on appelle un plasma. Il arrive qu’une instabilité apparaisse, grandisse et perturbe assez le plasma pour que celui-ci vibre, malgré le champ magnétique utilisé pour le contenir. S’il touche les parois du réacteur dans lequel il se trouve, le plasma se refroidit rapidement et crée alors des forces électromagnétiques importantes dans la structure de la machine.
Le défi était de réduire les instabilités à l’intérieur même du plasma pour qu’elles ne croissent pas, tout en permettant au réacteur de fonctionner. Il fallait donc travailler avec la configuration particulière des réacteurs, où le plasma est très fortement confiné par le champ magnétique. Jonathan Graves et ses collègues du Centre de recherches en physique des plasmas de l’EPFL ont ajusté une antenne qui émet un rayonnement électromagnétique pour juguler ces instabilités à leur apparition directement dans la région où elles se forment, sans perturber le reste de l'installation.
Les physiciens ont d’abord réalisé des simulations pour vérifier dans quelle mesure la fréquence du rayonnement et l’endroit où il est appliqué permettent de supprimer les instabilités. Ensuite, ils ont réalisé des tests pour confirmer leurs calculs. L’intérêt de leur approche est d’avoir utilisé des antennes servant à chauffer le plasma et déjà présentes dans le Joint european torus (JET), le plus grand réacteur en fonction actuellement. Résultat surprenant, les simulations et les tests ont montré qu’il est possible de combiner chauffage et suppression des instabilités en dirigeant le rayonnement non pas exactement au centre du plasma, mais légèrement à côté.
Les prochaines étapes consistent à ajouter un système de détection pour permettre de neutraliser les instabilités en temps réel sur de plus longues durées. Ces avancées pourront ensuite être implémentées sur le réacteur à fusion ITER, en développement dans le Sud de la France.
Noter cet article :
Vous serez certainement intéressé par ces articles :
Le Japon prévoit de lancer un prototype de centrale solaire spatiale d’ici 2025
Bien que l’énergie solaire soit utilisée depuis les années 1970, son adoption généralisée reste limitée en raison de défis techniques et logistiques. Les difficultés incluent par exemple le manque ...
Un générateur domestique d'hydrogène vert
Couvrir, à l’année, plus de 80 % des besoins en électricité d’une famille de quatre personnes. C’est l’objectif du générateur d’hydrogène, installé en septembre 2023 à Brest, et développé par ...
Transition énergétique : des métaux rares bientôt extraits des algues marines ?
Certaines espèces d’algues sont capables de bioaccumuler des terres rares essentielles à la transition énergétique. Une ressource suscite un intérêt particulier ces derniers temps : les algues. Pas ...
Recommander cet article :
- Nombre de consultations : 841
- Publié dans : Energie
- Partager :