Matière
- Matière et Energie
- Energie
Un liquide de refroidissement efficace pour batteries de véhicules électriques
- Tweeter
-
-
4 avis :
Les batteries des voitures électriques possèdent une température de fonctionnement optimale comprise entre 20 et 35°C, nécessitant un système de refroidissement performant pour empêcher leur surchauffe. Deux principaux systèmes de refroidissement, par air et par eau, sont déjà disponibles sur le marché. Néanmoins, les systèmes de refroidissement par air ne permettent pas d'absorber la chaleur de manière optimale. De plus, les cellules à l'intérieur des modules de batterie doivent être suffisamment espacées les unes des autres afin d'assurer une bonne circulation de l'air, d'où une perte de place importante. Les refroidissements par eau sont, quant à eux, plus efficaces, mais nécessitent de grandes quantités de liquide, impliquant une augmentation de la masse des véhicules et donc une réduction de leur autonomie.
Dans ce contexte, des chercheurs de l'Institut Fraunhofer des technologies de l'environnement, de la sécurité et de l'énergie (UMSICHT) d'Oberhausen (Rhénanie du Nord-Westphalie) ont développé un matériau à changement de phase aux propriétés réfrigérantes dénommé "CryoSolplus". Ce dernier est constitué d'un mélange d'eau et de paraffine, de tensioactifs stabilisants et d'un produit antigel, le glycol. Lorsque le liquide absorbe de la chaleur, les boulettes de paraffine contenues dans ce dernier fondent. Une fois le liquide refroidi, les boulettes de paraffine reprennent leur forme solide initiale. Ainsi, le CryoSolplus permet d'absorber trois fois plus de chaleur que l'eau, réduisant la quantité de liquide nécessaire dans le circuit de refroidissement. De plus, le CryoSolplus est un bon conducteur de chaleur, permettant d'évacuer celle-ci rapidement des cellules de batterie. Les coûts supplémentaires par rapport à un système de refroidissement par eau sont de l'ordre de 50 à 100 euros.
"Lors de la phase de développement du CryoSolplus, le problème principal consistait à assurer la stabilité de la dispersion", explique Tobias Kappels, chercheur à l'Institut Fraunhofer UMSICHT. Ainsi, les boulettes de paraffine ne doivent ni s'agglomérer, ni se concentrer à la surface du liquide, leur densité étant plus faible que celle de l'eau. Pour empêcher ce phénomène, les tensioactifs stabilisent la dispersion en se fixant sur les boulettes de paraffine et en formant une couche protectrice autour de celles-ci. Le choix des tensioactifs appropriés, résistant aux contraintes mécaniques lors du pompage du liquide et stables lors des changements de phase, a fait l'objet d'études approfondies.
Noter cet article :
Vous serez certainement intéressé par ces articles :
Capturer le CO2 grâce à un matériau hybride à haut rendement énergétique
Dans les grandes industries émettrices de CO2, comme les cimenteries, les raffineries de pétrole et les centrales thermiques, la technologie de capture du carbone peut être facilement appliquée pour ...
Un premier drone cargo à hydrogène longue portée
Le secteur de l’aéronautique franchit une nouvelle étape avec le dévoilement du premier drone cargo à hydrogène longue portée par la société Qdot, en partenariat avec H3 Dynamics. Ce drone hybride ...
Des colorants écologiques pour transformer la lumière du soleil en hydrogène
Des chercheurs de l’Université de Jena, dirigés par la chimiste Kalina Peneva, ont développé des colorants qui sont exempts de métaux, simples à produire et capables de transférer l’énergie ...
Recommander cet article :
- Nombre de consultations : 1545
- Publié dans : Energie
- Partager :