Vivant
- Santé, Médecine et Sciences du Vivant
- Neurosciences & Sciences cognitives
Le cerveau des calmars se développe de façon similaire au cerveau humain
- Tweeter
-
-
0 avis :
Les céphalopodes sont connus pour leurs étonnantes capacités : ils peuvent par exemple se camoufler habilement dans leur environnement, utiliser des outils pour résoudre des problèmes, bénéficient d’une incroyable mémoire et font preuve de curiosité. Et pour cause : ils possèdent le cerveau le plus développé de tous les invertébrés. Des chercheurs du FAS Center for Systems Biology de l’Université Harvard ont réussi à observer en direct une partie des mécanismes menant à ce cerveau hors norme : il se trouve que son développement est très similaire à celui des vertébrés.
La classe des céphalopodes — qui inclut notamment le calmar, la seiche et le poulpe — est apparue à la fin du Cambrien, il y a environ 500 millions d’années. Ses représentants ont évolué différemment des vertébrés. Pourtant, ils possèdent un système nerveux vaste et complexe, et des yeux à haute acuité, qui sont des caractéristiques que l’on retrouve dans la lignée des vertébrés. « La taille des systèmes nerveux des animaux et la diversité des types de cellules qui les composent sont le résultat d’une régulation étroite de la prolifération et de la différenciation cellulaires au cours du développement », expliquent les chercheurs dans Current Biology.
Les processus déterminant la taille du système nerveux et menant à cette diversité cellulaire ne sont toutefois pas bien compris. Pour en savoir plus, la biologiste Kristen Koenig et son équipe ont utilisé une nouvelle technique d’imagerie leur permettant d’observer quasiment en temps réel la création de neurones dans des embryons de calmar de l’espèce Doryteuthis pealeii (ou Calmar totam), particulièrement abondante dans le nord-ouest de l’Océan Atlantique. Ils ont suivi ces cellules tout au long du développement du système nerveux de la rétine de l’animal.
L’équipe a utilisé des techniques similaires à celles qui sont utilisées pour étudier des organismes modèles, comme la mouche à fruits et le poisson-zèbre. Les cellules souches (des cellules progénitrices neurales) ont été marquées avec du colorant fluorescent afin de pouvoir les cartographier et les suivre ; les chercheurs ont observé le comportement de chacune d’entre elles à l’aide de microscopes de pointe, focalisés sur les rétines d’embryons de calmar — où se concentrent les deux tiers du tissu neural de l’animal. Ils ont capturé des images à haute résolution toutes les 10 minutes, pendant plusieurs heures.
Contre toute attente, l’équipe a remarqué que le calmar Doryteuthis pealeii utilise des mécanismes au cours de la neurogenèse rétinienne qui sont caractéristiques des processus observés chez les vertébrés. « Nos conclusions ont été surprenantes, car on a longtemps pensé qu’une grande partie de ce que nous savons sur le développement du système nerveux chez les vertébrés était spécifique à cette lignée », a déclaré Kristen Koenig.
Le processus commence par la formation d’un type particulier de structure appelé "épithélium pseudo-stratifié" : les cellules s’allongent pour former un tas dense, mais restent toutes en contact avec la lame basale. Les chercheurs ont ensuite constaté que les cellules progénitrices de la rétine chez le calmar subissent une migration nucléaire jusqu’à ce qu’elles quittent le cycle cellulaire ; le noyau de ces structures se déplace de haut en bas, avant et après la division. « Ce mouvement est important pour maintenir le tissu organisé et permettre une croissance continue », ont-ils déclaré.
Cet épithélium pseudo-stratifié a universellement été observé dans le développement du cerveau et des yeux chez les vertébrés et de ce fait, a longtemps été considéré comme l’une des raisons pour lesquelles le système nerveux des vertébrés pouvait devenir si grand et si complexe. Il a déjà été observé chez d’autres animaux, mais l’épithélium du calmar était étonnamment très similaire à celui des vertébrés, à la fois en termes de taille, d’organisation et de mouvement des noyaux cellulaires.
Ainsi, bien que les vertébrés et les céphalopodes aient divergé les uns des autres il y a 500 millions d’années, le développement de leurs systèmes nerveux repose sur les mêmes mécanismes et les cellules nerveuses semblent suivre un même schéma directeur. Cela suggère que ces mécanismes pourraient être très importants, voire indispensables, pour la construction de grands systèmes nerveux, ajoute Koenig.
Article rédigé par Georges Simmonds pour RT Flash
Noter cet article :
Vous serez certainement intéressé par ces articles :
Nos souvenirs se formeraient grâce à la création continue de nouvelles connexions entre des neurones...
Les souvenirs se stockent dans notre cerveau. Il s’agit d’informations qui dérivent d’expériences et qui s’incorporent dans notre cerveau. Cette incorporation se fait sous forme de modifications ...
Edito : Le cerveau dévoile de nouveaux océans de complexité...
Cette semaine, je reviens sur un sujet d'étude fascinant, notre cerveau. En quelques mois, de multiples découvertes, parfois très surprenantes, sont venues éclairer un peu plus ce vaste continent, ...
Révolutionner la récupération cérébrale grâce à la protéine LK-2
Une étude chinoise révèle une molécule, LK-2, qui pourrait révolutionner le traitement de l'AVC en ciblant sélectivement les interactions nocives du glutamate dans le cerveau, conduisant ...
Recommander cet article :
- Nombre de consultations : 0
- Publié dans : Neurosciences & Sciences cognitives
- Partager :