RTFlash

Matière

Associer des polymères pour augmenter la durabilité des batteries

Les batteries lithium métal polymère présenteraient de nombreux avantages. D’abord, une densité d’énergie élevée dans des batteries plus minces et moins lourdes, associée à une amélioration importante de la sécurité grâce à l’utilisation d’un polymère non volatil. De plus, l’électrolyte polymère permet de sceller l’ensemble électrode/électrolyte et assure ainsi une bonne qualité de l’interface.

Par conséquent, les coûts de production se voient diminués par une facilité de fabrication via des procédés automatisés d’extrusion. Le tout fourni par une technologie plus verte du fait de l’élimination des solvants organiques volatils. Le développement de nouvelles familles d’électrolytes polymères, et notamment les copolymères à blocs polyanioniques, ouvre des perspectives importantes en permettant de cumuler différentes propriétés (mécanique, conductivité, nombre de transports, stabilité électrochimique…) en jouant sur la nature chimique des blocs.

Pour rassembler dans un même matériau une bonne conductivité et une bonne tenue mécanique, une solution évidente est de mélanger deux polymères. Or, peu de polymères sont miscibles entre eux. Cela entraîne par exemple une hétérogénéité des propriétés physico-chimiques de l’électrolyte. Pour s’affranchir de ce problème, la réalisation d’électrolytes à base de copolymères à blocs a donné des résultats très prometteurs. En effet, au sein de ces macromolécules, les polymères de natures distinctes sont reliés entre eux par des liaisons covalentes.

Cela permet d’avoir une combinaison synergique des propriétés des polymères constituant les divers blocs. Quels que soient la structure (dibloc ou tribloc) et le type d’architecture (greffés ou linéaires), les électrolytes des copolymères à blocs ont des valeurs de conductivité comprises entre 10–2 et 10–3 S/m à 40 oC, avec une tenue mécanique plus ou moins grande selon la composition du copolymère.

Cependant, ces systèmes présentent une forte limitation en puissance due au faible nombre de transports des ions lithium Li+, appelé t+ (t+ < 0,3). Durant la décharge de la batterie, les cations lithium sont consommés à l’électrode positive et produits à l’électrode négative, créant ainsi aux interfaces des excès de charges (positive à l’électrode négative et négative à l’électrode positive). Pour compenser ce phénomène, les anions mobiles diffusent de l’électrode positive vers l’électrode négative, ce qui entraîne la formation d’un gradient de concentration de sel au sein de l’électrolyte.

Ce gradient de concentration conduit à une polarisation de concentration et à un courant de diffusion qui limite la puissance des batteries. La charge doit donc être faite à des courants faibles… Un problème résolu en attachant les anions sur les chaînes du polymère hôte afin de les immobiliser et de tendre ainsi idéalement vers un t+ de 1. Dans ces conditions, le transport des ions ne se fait plus par diffusion-migration, mais uniquement par migration. Il n’y a alors plus de courant limite de diffusion.

Article rédigé par Georges Simmonds pour RT Flash

Techniques de l'Ingénieur

Noter cet article :

 

Vous serez certainement intéressé par ces articles :

Recommander cet article :

back-to-top